Reactive oxygen species regulate osteopontin expression in a murine model of postischemic neovascularization.
نویسندگان
چکیده
OBJECTIVE Previous findings from our laboratory demonstrated that neovascularization was impaired in osteopontin (OPN) knockout animals. However, the mechanisms responsible for the regulation of OPN expression in the setting of ischemia remain undefined. Therefore, we sought to determine whether OPN is upregulated in response to ischemia and hypothesized that hydrogen peroxide (H(2)O(2)) is a critical component of the signaling mechanism by which OPN expression is upregulated in response to ischemia in vivo. METHODS AND RESULTS To determine whether ischemic injury upregulates OPN, we used a murine model of hindlimb ischemia. Femoral artery ligation in C57BL/6 mice significantly increased OPN expression and H(2)O(2) production. Infusion of C57BL/6 mice with polyethylene glycol-catalase (10 000 U/kg per day) or the use of transgenic mice with smooth muscle cell-specific catalase overexpression blunted ischemia-induced OPN, suggesting ischemia-induced OPN expression is H(2)O(2)-dependent. Decreased H(2)O(2)-mediated OPN blunted reperfusion and collateral formation in vivo. In contrast, the overexpression of OPN using lentivirus restored neovascularization. CONCLUSIONS Scavenging H(2)O(2) blocks ischemia-induced OPN expression, providing evidence that ischemia-induced OPN expression is H(2)O(2) dependent. Decreased OPN expression impaired neovascularization, whereas overexpression of OPN increased angiogenesis, supporting our hypothesis that OPN is a critical mediator of postischemic neovascularization and a potential novel therapeutic target for inducing new vessel growth.
منابع مشابه
Osteopontin expression in a Murine Model of Postischemic Neovascularization
he occlusion of blood vessels ultimately leads to ischemia, initiating multiple processes that promote neovasculariza-tion as a compensatory mechanism to restore blood flow and preserve tissue function. The ability to develop new collaterals is strongly associated with reduced long-term cardiac mortality in patients with acute myocardial infarction and stable coronary artery disease. 1 The form...
متن کاملOverexpression of catalase in myeloid cells causes impaired postischemic neovascularization.
OBJECTIVE Myeloid lineage cells (MLCs) such as macrophages are known to play a key role in postischemic neovascularization. However, the role of MLC-derived reactive oxygen species in this process and their specific chemical identity remain unknown. METHODS AND RESULTS Transgenic mice with MLC-specific overexpression of catalase (Tg(Cat-MLC) mice) were created on a C57BL/6 background. Macroph...
متن کاملInterplay of Phosphorylated Apoptosis Repressor with CARD, Casein Kinase-2 and Reactive Oxygen Species in Regulating Endothelin-1–Induced Cardiomyocyte Hypertrophy
Objective(s): The role of the Apoptosis repressor with caspase recruitment domain (ARC) in apoptosis and in certain hypertrophic responses has been previously investigated, but its regulation of Endothelin-1 induced cardiac hypertrophy remains unknown. The present study discusses the inhibitory role of ARC against endothelin–induced hypertrophy. Results:In present study Endothelin treated car...
متن کاملClearance of Propionibacterium acnes by kupffer cells is regulated by osteopontin through modulating the expression of p47phox.
Osteopontin (OPN) is a cytokine with multiple functions, including the regulation of innate immune response. However, the detailed function and mechanism of OPN in host defense against invaded microorganisms remain unclear. In this report, we revealed that OPN could affect the clearance of Propionibacterium acnes in kupffer cells. In a murine model of P. acnes induced hepatic granuloma, OPN-def...
متن کاملEvaluation of antioxidant and anti-melanogenic activities of different extracts from aerial parts of Nepeta binaludensis Jamzad in murine melanoma B16F10 cells
Objective(s): Nepeta binaludensis Jamzad (Lamiaceae) has been used in folk medicine of Iran to cure various diseases. The plant is an endemic species to the country that has recently been identified in Razavi Khorasan province. To evaluate the antioxidant and anti-melanogenesis of N. binaludensis, in this study the inhibitory activity of different extracts of N. binaludensis in murine melanoma ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 32 6 شماره
صفحات -
تاریخ انتشار 2012